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Abstract 

Winter habitat for the American Black Duck Anas rubripes (hereon Black Duck)  
has decreased on the Atlantic coast of  North America because of  urbanisation  
and other factors. Human development makes restoration of  coastal wetlands for 
wildlife difficult, but agriculture could increasingly provide food for Black Duck 
during winter. Diet, body condition and stress indices of  Black Duck and Mallard  
A. platyrhynchos were compared between coastal wetlands and sites with Corn Zea mays 
fields on Long Island, New York, used by the birds from late-January to late-March. 
Black Duck and Mallard were captured at Corn sites, whilst only Black Duck were 
collected in coastal wetlands. Mallard were not available in coastal wetlands for 
collection during the study. Stable isotope analysis indicated that the Black Duck ate 
more animal matter (measured by a blood δ15N index) at coastal than Corn sites, 
whereas Mallard and Black Duck at Corn sites had similar animal diets, although 
Mallard ate more Corn (determined by blood δ13C levels) than Black Duck. Body 
mass decreased during the winter for Black Duck at both coastal and Corn sites but 
increased in Mallard at Corn sites. Stress indices, measured by packed red blood cell 
volume and heterophil/lymphocyte ratios, suggested less stress for Black Duck when 
using Corn than when at the coastal sites. Results suggest an endogenous mechanism 
for weight loss in the Black Duck during winter which differs from Mallards in our 
study area, although given that Black Duck generally appear to eat less Corn other 
factors not considered here may also contribute to the weight loss patterns. Overall, 
Black Ducks appeared to benefit less than Mallards from the availability of  Corn. 
Where feasible, continued protection and restoration to increase quantity and quality 
of  coastal wetlands should be the focus on Long Island and elsewhere where Black 
Duck and Mallard are sympatric. 
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Once the most common dabbling duck in 
portions of  eastern North America (Eaton 
1910), the American Black Duck Anas 

rubripes (hereafter Black Duck) population 
estimate (560,000) remains below the Black 
Duck Joint Venture goal of  640,000 
(USFWS 2013, 2019). The 50% decline in 
numbers of  American Black Duck since  
the 1950s has been attributed to loss of  
wintering habitat due to urbanisation, 
reductions in forested wetlands during the 
breeding period and winter, over-harvest 
from hunting, and competition and 
hybridisation with the Mallard A. platyrhynchos  
(Ankney et al. 1987; Longcore et al. 1998; 
Mank et al. 2004; Maisonneuve et al. 2006). 
Reduced quantity and quality of  forested 
wetland breeding habitat may be limiting 
Black Duck abundance, recruitment and 
survival (Conroy et al. 2002; Fino et al. 2017). 
In addition, urbanisation, coastal wetland 
loss, sea level rise, and habitat fragmentation 
and degradation have increased and continue  
to threaten habitat availability for Black 
Duck (Conroy et al. 2002; Cramer et al. 2012).  

The Mallard was once uncommon in 
eastern North America (Eaton 1910) but 
were able to expand their range into that 
region from the mid-1900s, as humans 
increasingly created a non-forested landscape  
similar to their traditional, mid-continent 
prairie-wetland region (Johnsgard & 
DiSilvestro 1976; Conroy et al. 1989; 
Johnson & Sorenson 1999; but see 
Merendino et al. 1995). Nowadays, the 
Mallard is the most common breeding and 
wintering duck in much of  eastern North 
America and it is thought that they filled a 
portion of  the niche previously the domain 
of  the Black Duck as we cleared forests, 

urbanised coastal areas, and initiated large-
scale agriculture in the region (Crinigan 
1960; Heusmann 1991; Harrigan 2006; 
USFWS 2019). In addition, millions of  
domestic Mallards of  European genetic 
origin have been released directly into 
portions of  the Black Duck’s breeding and 
wintering ranges, from the 1900s to the 
present day (Heusmann 1991; Harrigan 
2006; Lavretsky et al. 2014). Black Ducks 
commonly use coastal wetlands during 
winter but, where available, also make 
feeding flights to fields planted with Corn 
Zea mays where they eat this energy-rich 
waste grain (i.e. the kernels unintentionally 
left on the ground after harvest) (Delnicki & 
Reinecke 1986; Combs & Fredrickson 1996; 
Cramer et al. 2012). Mallard typically forage 
at inland freshwater sites, and similarly make 
foraging flights to feed on waste Corn 
(Baldassarre & Bolen 1984; Bleau 2018). 
This results in the Black Duck typically 
feeding without competition from Mallard 
at coastal wetlands, whereas they encounter 
and feed alongside Mallard at inland 
freshwater wetlands and in the Corn fields 
(Bleau 2018; Schummer et al. 2020; Flores & 
Schummer 2023).   

Development on coastal wetland sites for 
nearly 400 years (Sanderson & Brown 2023) 
has resulted in less habitat and thus natural 
food resources being available for Black 
Duck in winter (Cramer et al. 2012). In New 
Jersey, animal and plant food resources in 
coastal wetlands are generally greater than at 
the inland freshwater wetlands where 
Mallard primarily foraged (Cramer et al. 
2012). In contrast, on eastern Long Island, 
Plattner et al. (2010) determined that food 
resources were greater in freshwater than 
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coastal wetlands, but they did not include 
vertebrate animal foods. If  food resources 
are lower in coastal than freshwater marshes 
on eastern Long Island, then the Black Duck 
may need to allocate a greater proportion of  
the day foraging than Mallards or would 
require more area of  habitat per individual 
(Plattner et al. 2010). In Black Duck, and 
other waterfowl, the capacity to sustain 
nutrient reserves (e.g. lipids) affects survival 
within and among seasons and has  
cross-seasonal effects on reproduction 
(Sedinger & Alisauskas 2014; Alisauskas & 
DeVink 2015). The availability of  wintering 
habitat and associated nutrients represented 
in foods therefore may be limiting the  
Black Duck population, with continued 
development and degradation of  the Atlantic  
coastal wetlands potentially exacerbating 
habitat loss (Cramer et al. 2012; USFWS 
2019). 

Stable isotopes can be used as an index to 
differentiate and compare food ingested by 
waterfowl using coastal wetlands and Corn 
fields, with δ15N levels detected in the blood 
indicating animal content and δ13C levels 
determining plant content in the diet 
(Hobson & Clark 1992). While Corn may 
provide supplemental foraging opportunities  
for the Black Duck the extent to which they 
may benefit from these resources in 
comparison with Mallards is unknown. 
Understanding the contribution of  Corn to 
Black Duck body condition and seasonal 
stress is important, especially for 
considering the consequences of  the decline 
in quantity and quality of  coastal wetlands. 
Waste Corn may increase Black Duck 
wintering carrying capacity, but concurrently 
understanding how Mallards may benefit 

from this resource is also important because 
of  the foraging niche overlap between these 
species and potential for inter-specific 
competition (Ankney et al. 1987; Schummer 
et al. 2020).  

In addition to body mass, several indices 
of  stress can be useful for understanding 
how food availability and predictability 
affects animals during winter (Gross & Siegel  
1983, 1986; Vleck et al. 2000). Animals face 
a variety of  potential stressors throughout 
their life-cycle including weather severity, 
food availability, predation, injury, disease, 
competition and other social interactions 
(Vleck et al. 2000). Hematocrit levels, or 
packed red blood cell volume (PCV), can be 
used as an index to measure stress, as it 
compares the quantity of  whole red blood 
cell volume to total blood volume (Vleck et al.  
2000). Similarly, heterophil to lymphocyte  
(H/L) ratios in blood is also a common 
stress indicator (Gross & Seigel 1983),  
with elevated H/L ratios potentially an 
advantageous response to injury and infection  
(Minias 2019). Food and water deprivation, 
extreme temperatures, light variability and 
social interactions can also elevate the 
number of  heterophils, which has an inverse 
relationship with lymphocytes (Gross & 
Siegel 1986; Gross 1989; McFarlane & 
Curtis 1989). In wintering waterfowl, the 
PCV and H/L ratios can thus provide some 
insight into the relationships that habitat 
use, diet and body condition have with the 
birds’ stress levels.  

Mallard and Black Duck have a similar 
strategy of  using a mix of  endogenous and 
exogenous nutrient strategies in winter, 
migration and breeding (Reinecke et al. 1982; 
Hepp 1986; Heitmeyer 1988). Lipids are 
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used as energy for thermoregulation and 
daily activities in winter, but also as carry-
over energy needed to fuel migration and 
during the breeding season, including 
energy for obtaining the protein (i.e. 
invertebrates) necessary for egg production 
(Rohwer 1986; Alisauskas & Ankney 1992; 
Esler & Grande 1994). Lipids remaining 
after migration (endogenous) are used in 
clutch formation (Ankney et al. 1991; 
Alisauskas & Ankney 1992). Body condition,  
as indexed by body mass adjusted for body 
size (Whyte & Bolen 1986; Hanson et al. 
1990) and corresponding lipid reserves are 
influenced by food availability and 
predictability (Baldassarre et al. 1986; Whyte 
et al. 1986). When food is predictable, 
storing lipids is maladaptive because it 
necessitates greater exposure during foraging  
and feeding flights, and decreases flight 
mobility for predator avoidance (Batt et al. 

1992). Overall, ducks foraging on energy 
dense food, predictably available during 
winter, tend to lose more weight (i.e. lipids) 
than those using sites with unpredictable 
food resources (Lima 1986; Barboza & 
Jorde 2002; Schummer et al. 2012).  

This study aimed to compare the diet 
(measured as δ15N and δ13C levels in blood 
samples), body condition and stress indices 
recorded for Black Duck using Corn and 
coastal sites, and also to compare these same 
metrics for Black Duck and Mallard where 
the two species both occur in Corn fields 
and traps baited with Corn (hereafter  
Corn sites). It was hypothesised that Black 
Duck and Mallard would both lose body 
mass throughout winter despite foraging  
at Corn sites, because food resources  
were predictable and weight loss appears 

advantageous when compared with exposure  
with constant feeding and carrying lipids not 
needed for migration or breeding (Perry  
et al. 1986; Loesch et al. 1992; Baldassarre & 
Bolen 2006). The prediction was that Black 
Duck using coastal wetlands would forage 
more on animal matter (i.e. have higher δ15N 
levels) than plant matter (i.e. Corn; δ13C) 
compared to those using Corn sites, but 
these differences in foraging would not 
affect their body mass dynamics. Relative to 
Mallard, however, it was predicted that 
Black Duck would sustain less body mass 
throughout winter and have greater stress at 
Corn sites, because Mallard are known to 
exploit agricultural landscapes more than 
Black Duck and therefore may be better 
adapted to them (Ankney et al. 1987; Davis  
et al. 2014; English et al. 2017). Also, inter-
specific competition and other social 
interactions with Mallard could increase 
Black Duck stress levels (Ankney et al. 1987; 
Schummer et al. 2020). Most Mallard in 
eastern North America are wild × domestic, 
game-farm Mallard, with game-farm Mallard  
being of  European origin which have been 
under artificial selection for decades, and 
thus more likely both to tolerate regular 
contact with people and to occur in high-
densities with conspecifics (Lavretsky et al. 

2020; Schummer et al. 2023). These game-
farm Mallard are also fed commercial pellets 
and whole grains for greater survival and 
quick growth in captivity (Heusmann 1991; 
Lavretsky et al. 2014; Schummer et al. 2023). 
As such, the Black Duck and Mallard 
wintering on Long Island have had very 
different histories since the early 20th 
century, which were expected to lead to 
different strategies to survive the winter.  
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Methods 

Study area 

The study was conducted in Nassau and 
Suffolk counties on Long Island, New York, 
with data collected from 10 February– 
28 March 2018 and 26 January–30 March 
2019. Nassau County contains coastal 
wetlands and freshwater ponds surrounded 
by residential homes while Suffolk County 
contains coastal wetlands, freshwater ponds 
and rural landscapes where Corn fields are 
available. Black Duck were lethally collected 
at Nassau County’s coastal wetlands (at  
Toll Booth Pond 40.313°N, –73.547°W; 

High Hill Pond 40.604°N, –73.497°W;  
and Meadow Island 40.602°N, –73.558°W; 
Fig. 1). Black Duck and Mallard were 
trapped in Suffolk County (New Suffolk 
41.627°N, –72.774°W; Cutchogue 41.023°N,  
–72.511°W; Brookhaven 40.798°N, 
–72.891°W; Flanders 40.906°N, –72.583°W; 
and Aquebogue 40.933°N, –72.611°W;  
Fig. 1). Corn fields were readily available  
in Suffolk County and were visited regularly 
by Black Duck and Mallard (Flores & 
Schummer 2023; Stedman 2024). On average,  
Corn fields were 91 km away from the lethal 
collection area in the coastal wetlands of  
western Long Island in Nassau County. It 

Figure 1. Map of  Corn sites (white stars, left to right: Brookhaven, Flanders, Aquebogue, Cutchogue 
and New Suffolk) and lethal collection sites at coastal wetlands (white circle and insets: 1 = Meadow 
Island, 2 = Toll Booth Pond and 3 = High Hill Pond) in Suffolk and Nassau counties, Long Island,  
New York in 2018 and 2019.  
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was assumed that Corn fields were not 
readily accessible to Black Duck at coastal 
sites because their home ranges tend to  
be much smaller (e.g. mean = 1,082 ha; 
Ringelman et al. 2015) than the distance to 
the closest Corn field.  

Lethal collection and trapping  

Black Duck were collected by pass-shooting 
(i.e. shooting flying ducks without the aid  
of  decoys to lure them into range) and 
shooting over decoys in coastal wetlands on 
daily tide changes as they moved between 
roost to feeding locations. Ducks were 
captured at Corn sites using rocket nets (in 
2018), and at walk-in and swim-in cloverleaf  
funnel traps, baited with Corn (in 2018 and 
2019; Bollinger et al. 1989; Evrard & Bacon 
1998). 

Ducks were aged using guidelines from 
Ashley et al. (2006) as second year (birds 
hatched the year prior to capture) or after 
second year (birds hatched > 2 years prior to 
capture) and sexed by cloacal examination 
and plumage (Carney 1992; Ashley et al. 

2006). For each duck, body mass (scale 
accuracy of  ± 1 g), tarsus length (calliper 
accuracy ± 0.02 mm), culmen length (± 0.02 
mm), wing chord (measuring stick accuracy 
± 1 mm), and head length (± 0.02 mm) were 
recorded. For ducks at Corn sites, an index 
of  Corn present was recorded as 0 to 3  
(0 = no Corn, 1 = 1/3 full, 2 = 1/2 full  
and 3 = full) by feeling the oesophagus and 
proventriculus (Conroy et al. 1989). This 
index was used to adjust body mass for 
Corn ingested by ducks sampled at Corn 
sites. Estimated mean (± s.e.) Corn wet 
weight for these indices, each derived from 
30 samples, were: 1 = 60 ml (42.65 g ± 0.29), 

2 = 80 ml (57.06 g ± 0.26) and 3 = 120 ml 
volumes (86.23 g ± 0.51). This weight was 
subtracted from total body mass to calculate 
a total adjusted body mass. For Black Duck 
at coastal sites, Corn was never felt in their 
oesophagus and proventriculus.  

For stable isotope (δ13C and δ15N levels), 
PCV and H/L analysis, a 23-gauge needle 
and syringe were used to collect 2–3 ml of  
blood from the metatarsal vein for trapped 
ducks and by cardiac puncture from lethally 
collected ducks (Owen 2011). Blood (1 ml) 
was placed in a sterile Eppendorf  tube for 
δ13C and δ15N analysis, filled a 70 μl 
capillary tube for PCV analysis, and a drop 
was allocated for a blood smear for H/L 
ratio analysis. Stable isotope samples were 
frozen within 6 h of  collection and later 
shipped, frozen, to the Cornell Stable 
Isotope Laboratory for analysis. PCV values 
(± 1%) were calculated after a centrifuge at 
12,000 RPM for 10 min (Owen 2011). H/L 
analysis requires expertise in identification 
of  cells in blood smears, so preserved blood 
smears from 2018 was sent to B. Grasperge 
(Doctor of  Veterinary Medicine and 
Diplomate of  the American College of  
Veterinary Pathologists) at Louisiana State 
University, USA for processing. Blood 
smears from 2019 could not be analysed 
because of  logistical issues.  

Diet analysis  

Stable isotopes (δ13C and δ15N) were used 
to compare diet compositions between 
treatments (coastal or Corn) and species.  
At the Cornell Stable Isotope Laboratory, 
samples were combusted in an elemental 
analyser, and gases were sent to the isotope-
ratio mass spectrometer using a continuous 
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flow interface. Data are reported as 
differences in isotopic ratios, for which the 
units are parts per thousand (or per mille; 
‰), compared to Pee Dee Belemnite (PDB),  
for carbon, and atmospheric nitrogen (AIR), 
for nitrogen, according to the following  

equation: where  

δX is the isotope of  interest (either δ15N  
or δ13C, in ‰) and R is the ratio of  the 
abundance of  the heavy to the light isotope 
(15N/14N or 13C/12C), with Rsample being  
the ratio within the sample and Rstd the  
ratio of  heavy to light isotope within the 
international standard (Hobson et al. 1995). 

Statistical analysis  

Diet, body mass, PCV and H/L ratios were 
modelled as a function of  an index of  body 
size (mass model only), treatment (coastal or 
Corn), species (Black Duck or Mallard), 
date, year and their interactions using linear 
mixed models (PROC Mixed, SAS Institute 
2009). To obtain the index of  structural size, 
a Principal Components Analysis (PCA)  
of  four morphological measurements 
(tarsus, culmen, head and wing chord)  
was conducted. An information theoretic 
approach was used to determine support  
for different models, based on Akaike’s 
information criterion (AIC) (Burnham & 
Anderson 2002). The sex × age interaction 
and year were controlled for by being 
included as covariates in all models and PC1 
was also included to control for variation in 
structural size. Models ≤ 2.0 ΔAIC units 
from top models were considered to have 
some support (Burnham & Anderson  
2002). When competing models were ≤ 2.0 
ΔAIC units from the top models (Burnham 

X = R sample

R std
=1 1,000,

& Anderson 2002) model-averaging of  
predicted values was used because there was 
not overwhelming support for a single 
model. The most complex model used for 
analysis was treatment × species × date × 
year, while controlling for sex × age and PC1 
as covariates. 

Results 

Sampling frame 

Fifty-two Black Duck from coastal sites and 
170 Black Duck and 61 Mallard from Corn 
sites were sampled during the study. As a 
result of  logistical issues, however, both in 
collecting samples from the field and with 
processing them at the laboratory, the 
number of  samples used for δ13C and δ15N 
analysis (Black Duck: n = 217 (88 in 2018, 
129 in 2019); Mallard: n = 61 (14 in 2018,  
47 in 2019)), differed from those used for 
body mass (Black Duck: n = 222 (92 in 2018,  
130 in 2019); Mallard: n = 61 (14 in 2018,  
47 in 2019)), PCV (Black Duck n = 211  
(88 in 2018, 123 in 2019); Mallard n = 61  
(14 in 2018, 47 in 2019)), and H/L  
ratio (Black Duck n = 64 (all in 2018)) 
analyses. 

Dietary analysis 

The best model for δ13C was the interaction 
of  species, treatment, date and year (Table 1 
& Supporting Materials Table S1), with the 
score for next closest model being 2.5 AIC 
units from that of  the best model. In 2018, 
Black Duck δ13C measures were stable at 
Corn sites (0.1% decrease) and decreased by 
27.9% at coastal sites, whereas δ13C levels 
increased by 14.6% for Mallard at Corn sites 
over the same period (Fig. 2). In 2019, Black 



Ducks on Long Island in winter  139

© Wildfowl Press                                                                                              Wildfowl (2024) 74: 132–152

T
ab

le
 1

. M
ix

ed
-e

ff
ec

ts
 m

od
el

s 
of

 δ
13

C
, δ

15
N

, m
as

s, 
PC

V
 a

nd
 H

/L
 ra

tio
s 

fo
r A

m
er

ic
an

 B
la

ck
 D

uc
k 

an
d 

M
al

la
rd

 s
am

pl
ed

 d
ur

in
g 

w
in

te
r 

on
 L

on
g 

Is
la

nd
, N

ew
 Y

or
k,

 Ja
nu

ar
y–

M
ar

ch
 2

01
8 

an
d 

20
19

. O
nl

y 
m

od
el

s 
w

ith
 Δ

A
IC

 <
 2

 a
nd

 th
e 

nu
ll 

m
od

el
s 

ar
e 

sh
ow

n.
 

  R
es

po
ns

e 
   

   
   

   
 M

od
el

a
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 K

   
   

   
   

   
   

 Δ
A

IC
b

   
   

   
   

   
   

w
i  

 δ1
3 C

   
   

   
   

   
   

   
  S

PE
C

IE
S 
× 

T
R

E
A

T
M

E
N

T
 ×

 S
E

X
 ×

 A
G

E
 ×

 D
A

T
E

 ×
 Y

E
A

R
   

   
   

   
   

   
   

   
17

   
   

   
   

   
   

  
 0

.0
   

   
   

   
   

   
0.

78
 

   
   

   
   

   
   

   
   

   
   

 N
ul

l 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
1 

   
   

   
   

   
   

 1
24

.4
   

   
   

   
   

   
0.

00
 

δ1
5 N

   
   

   
   

   
   

   
  S

PE
C

IE
S 
× 

T
R

E
A

T
M

E
N

T
 ×

 S
E

X
 ×

 A
G

E
 ×

 Y
E

A
R

   
   

   
   

   
   

   
   

   
   

   
   

   
 1

5
   

   
   

   
   

   
  

 0
.0

   
   

   
   

   
   

0.
76

 

   
   

   
   

   
   

   
   

   
   

 N
ul

l 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
1 

   
   

   
   

   
   

 1
60

.0
   

   
   

   
   

   
0.

00
 

M
as

s
   

   
   

   
   

   
   

 S
PE

C
IE

S 
× 

T
R

E
A

T
M

E
N

T
 ×

 S
E

X
 ×

 A
G

E
 ×

 D
A

T
E

 ×
 Y

E
A

R
 ×

 P
C

1 
   

   
   

   
19

   
   

   
   

   
   

  
 0

.0
   

   
   

   
   

   
0.

92
 

   
   

   
   

   
   

   
   

   
   

 N
ul

l 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
1 

   
   

   
   

   
   

 3
50

.0
   

   
   

   
   

   
0.

00
 

PC
V

   
   

   
   

   
   

   
  S

PE
C

IE
S 
× 

T
R

E
A

T
M

E
N

T
 ×

 S
E

X
 ×

 A
G

E
 ×

 Y
E

A
R

 +
 D

A
T

E
   

   
   

   
   

   
   

   
16

   
   

   
   

   
   

  
 0

.0
   

   
   

   
   

   
0.

67
 

   
   

   
   

   
   

   
   

   
   

 S
PE

C
IE

S 
× 

T
R

E
A

T
M

E
N

T
 ×

 S
E

X
 ×

 A
G

E
 ×

 Y
E

A
R

   
   

   
   

   
   

   
   

   
   

   
   

   
 1

5
   

   
   

   
   

   
  

 1
.4

   
   

   
   

   
   

0.
33

 

   
   

   
   

   
   

   
   

   
   

 N
ul

l 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
1 

   
   

   
   

   
   

 2
32

.6
   

   
   

   
   

   
0.

00
 

H
/L

   
   

   
   

   
   

   
  T

R
E

A
T

M
E

N
T

 ×
 S

E
X

 ×
 A

G
E

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

8
   

   
   

   
   

   
  

 0
.0

   
   

   
   

   
   

0.
52

 

   
   

   
   

   
   

   
   

   
   

 T
R

E
A

T
M

E
N

T
 ×

 S
E

X
 ×

 A
G

E
 ×

 D
A

T
E

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  
9

   
   

   
   

   
   

  
 1

.0
   

   
   

   
   

   
0.

31
 

   
   

   
   

   
   

   
   

   
   

 N
ul

l 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
1

   
   

   
   

   
   

  
32

.3
   

   
   

   
   

   
0.

00
 

 a M
od

el
s 

in
co

rp
or

at
ed

 p
ar

am
et

er
s 

of
 s

tr
uc

tu
ra

l s
iz

e 
(P

C
1)

, a
ge

, s
ex

, A
m

er
ic

an
 B

la
ck

 D
uc

k 
or

 M
al

la
rd

 (S
PE

C
IE

S)
, s

tu
dy

 d
at

e 
(D

A
T

E
), 

sa
m

pl
in

g 
ye

ar
 (Y

E
A

R
) a

nd
 c

oa
st

al
 o

r 
ag

ric
ul

tu
re

 s
ite

 (T
R

E
A

T
M

E
N

T
). 

b M
od

el
s 

ar
e 

so
rt

ed
 b

y 
A

IC
, a

nd
 m

od
el

s 
w

ith
 Δ

A
IC

 ≤
 2

.0
 a

nd
 n

ul
l m

od
el

s 
ar

e 
sh

ow
n.

 T
he

 A
IC

 v
al

ue
s 

fo
r 

th
e 

to
p 

m
od

el
s 

w
er

e 
12

60
.0

, 
95

8.
2,

 3
20

6.
7,

 1
67

8.
9 

an
d 

45
4.

7 
fo

r 
δ1

3 C
, δ

15
N

, m
as

s, 
PC

V
 a

nd
 H

/L
, r

es
pe

ct
iv

el
y. 



140  Ducks on Long Island in winter

© Wildfowl Press                                                                                              Wildfowl (2024) 74: 132–152

Duck δ13C levels increased by 34.4% and 
7.5% at Corn and coastal sites, respectively, 
whereas δ13C increased by 48.8% for 
Mallard at Corn sites (Fig. 2). 

The best model for δ15N included the 
interaction of  species, treatment and year 
(Table 1 & Supporting Materials Table S1). 
The score for the next closest model was 2.6 
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Figure 2. Mean δ13C values in relation to date (0 = 26 January) during January–March in: (a) 2018 and  
(b) 2019, for Black Duck sampled at Corn sites (n = 70 in 2018; n = 99 in 2019) and coastal sites (n = 18 
in 2018; n = 30 in 2019), and also for Mallard sampled at Corn sites (n = 14 and 47 for 2018 and 2019, 
respectively). Note: no Mallard were sampled on the coast. ABDU = American Black Duck, MALL = 
Mallard.  
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AIC units from that of  the best model. 
Calculated model-predicted means (± s.e.) 
δ15N for Black Duck using coastal sites 
(11.53 ± 0.45 in 2018; 11.35 ± 0.40 in 2019) 
were greater than for Black Duck (2018 = 
8.58 ± 0.24; 2019 = 9.32 ± 0.23) and for 
Mallard at Corn sites (2018 = 7.70 ± 0.49; 
2019 = 8.12 ± 0.35) in both years of  the 
study (Fig. 3).  

Body mass 

Principal Component 1 explained 64% and 
74% of  the variation in body size in Black 
Duck and Mallard, respectively. The best 
model included the interaction of  species, 
treatment, date and year (Table 1 & 
Supporting Materials Table S1). The score 
for the next closest model was 5.0 AIC units 
from that of  the best model. The body mass 
of  Black Duck at Corn sites decreased 

during January–March by 4.8% (in 2018) 
and 2.0% (in 2019) and by 4.5% (2018) and 
9.5% (2019) for those at coastal sites. In 
contrast, the body mass of  Mallard utilising 
Corn sites increased over the same period, 
by 7.6% and 1.0% in 2018 and 2019, 
respectively (Fig. 4). 

Stress indices 

The best model for PCV included 
interactions among species, treatment, and 
year with an additive effect of  date (Table 1 
& Supporting Materials Table S1). Model 
averaging was used because the next closest 
model (interactions of  species, treatment, 
sex, age and year) was 1.4 AIC units away 
from the best model. Black Duck and 
Mallard at Corn sites had greater mean  
(± s.e.) PCV than Black Duck at coastal sites 
(Fig. 5). 
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Figure 3. Mean δ15N ratios for Black duck at Corn sites (n = 70 in 2018; n = 99 in 2019) and coastal 
sites (n = 18 in 2018; n = 30 in 2019), and also for Mallard at Corn sites (n = 14 and 47 for 2018 and 
2019, respectively), for samples taken during January–March each year. Note: no Mallard were sampled 
on the coast. Standard error bars are shown. ABDU = American Black Duck, MALL = Mallard. 
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The best model for H/L ratios included 
treatment (Table 1 & Supporting Materials 
Table S1). Model averaging was used because  
the next closest model (interactions of  
treatment, sex, age and date) was 1.0 AIC 
units away from the best model. In 2018, the 
H/L ratio in Black Duck using Corn sites 

increased by 132.4% while for Black Duck at 
coastal sites it increased by 1,868.1% from 
February to March in 2018 (Fig. 6).  

Discussion 
In accordance with prior research (English et 
al. 2017; Barboza & Jorde 2018), Black Duck 
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Figure 4. Model-predicted relationship between body mass (g) and date (0 = 26 January) during 
January–March in: (a) 2018 and (b) 2019, for Black Duck at Corn sites (n = 70 in 2018; n = 100 in 2019) 
and coastal sites (n = 22 in 2018; n = 30 in 2019), and also for Mallard at Corn sites (n = 14 and 47 in 
2018 and 2019, respectively). Note: no Mallard were sampled on the coast. ABDU = American Black 
Duck, MALL = Mallard. 
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at the coastal wetland sites had greater δ15N 
signatures in their blood than Black Duck or 
Mallard using Corn sites, suggesting that the 
Black Duck likely consume more animal 
food during winter in areas where Corn 
fields do not occur. Mallards were absent 
during the lethal collection of  Black Duck 
on coastal wetlands, also indicative of  
differences in habitat use by these closely 
related species. Black Duck and Mallard 
foraging on Corn may meet their daily 
energy demands in a shorter period than 
those foraging in coastal wetlands on Long 
Island (Brodsky & Weatherhead 1984; 
Kross et al. 2008; Plattner et al. 2010). 

However, the greater increases in δ13C levels 
during winter for Mallard at Corn sites 
suggested that they ate more Corn than 
Black Duck. In a complementary study, 
densities of  Mallard feeding in Corn fields 
were found, on average, to be 50% greater 
than those for Black Duck at these sites 
(Flores & Schummer 2023), and Mallard 
also tend to use freshwater wetlands along 
with the Corn fields, whereas Black Duck 
regularly use Long Island’s coastal wetlands 
(Plattner et al. 2010; English et al. 2017; 
Stedman 2024). Coastal wetlands remain 
relatively free of  Mallard, enabling Black 
Duck to feed with little potential inter-
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Figure 5. Model predicted mean packed red blood cell volume (PCV) for Black Duck at Corn sites  
(n = 70 in 2018; n = 96 in 2019) and at coastal sites (n = 18 in 2018; n = 27 in 2019), and also for Mallard 
at Corn sites (n = 27 in 2018; n = 47 in 2019), for samples taken during January–March each year. The 
additive effect of  date is not shown; PCV increased by 3.20% in all species and sites during our study. 
No Mallard were sampled on the coast. Standard error bars are shown. ABDU = American Black Duck, 
MALL = Mallard. 
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specific competition (Baldassarre 2014). 
Corn fields provide additional feeding 
opportunities for Black Duck, but here they 
also encounter and interact with Mallard. 
Whilst our study was observational, 
inferences were strengthened by concurrent 
studies of  both species in the region. 
Additional research is however required, to 
include concurrent tracking of  individual 
Black Duck and Mallard, to determine the 
portion of  time spent in different habitats 
and diurnal patterns of  site use during the 
winter season. Moreover, lethal collection of  
decoyed birds can introduce bias, such as 
lower body condition (Dufour et al. 1993; 
Pace & Afton 1999), but the Black Duck 
taken during our study were mostly paired 
and did not decoy well, and the majority of  

our sample was collected by pass-shooting 
from hidden positions (A. Flores, pers. obs.), 
which reduces the level of  bias especially in 
late-winter (Schummer et al. 2012).  

Consistent with the differences in diet, 
and similar to findings from previous 
studies (Barboza & Jorde 2018), Mallard in 
our study area gained or sustained mass 
throughout winter, whereas Black Duck 
body mass declined or was stable during  
the same period, even when both species 
were frequenting Corn sites. Although an 
endogenous mechanism has been shown to 
control the waterfowl lipid reserves during 
winter (Perry et al. 1986; Loesch et al. 1992; 
Baldassarre & Bolen 2006), results suggest 
subtle differences in nutrient strategies 
during winter between these closely-related 
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Figure 6. Heterophil to lymphocyte ratios (H/L) in relation to date (0 = 26 January), for Black Duck 
at Corn sites (n = 54) and coastal sites (n = 10) during January–March 2018. ABDU = American Black 
Duck. 
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species. Trends in body mass were different 
between years, but Mallard were heavier at 
the end of  winter in both years of  the study 
at a time when Straub et al. (2012) and others 
(Stafford et al. 2014) consider food resources 
to be most limiting. Sustaining greater lipid 
reserves during winter into spring may give 
Mallard a competitive advantage over Black 
Duck by allowing them to initiate spring 
migration sooner, and consequently to 
select and occupy higher quality breeding 
territories (Petrie et al. 2012). The Mallard 
breeding range has increasingly overlapped 
with that of  Black Duck and in many cases 
Black Duck were replaced by Mallard 
breeding pairs (Ankney et al. 1987; Petrie  
et al. 2012; Messmer et al. 2015; Macy 2020). 
Greater lipid reserves in Mallard than Black 
Duck would be hypothesised to result in 
greater productivity because clutch size is 
related to lipid reserves in the Mallard 
(Krapu 1981) and those initiating nests 
earlier typically have greater reproductive 
success (Dzus & Clark 1998). GPS-tagging 
Mallard and Black Duck at our study site 
during winter, to track their winter habitat 
use, timing of  migration, breeding location 
and onset of  nesting would provide further 
information about the utility of  Corn fields 
to these species (Stedman 2024). It is 
cautioned that marking ducks, including 
GPS-tagging has limitations that need to be 
addressed and each study objective should 
align with the technologies applied (Ward & 
Flint 1995; Garrettson & Rohwer 1998; 
Lameris et al. 2018). 

Differences in body mass dynamics 
during winter between Black Duck and 
Mallard may result from differences in 
predictability and energy density of  food 

resources among landscapes. Food availability  
is more consistent in coastal than freshwater 
wetlands (Plattner et al. 2010) and coastal 
wetlands are less likely to be affected by ice 
and snow events that can make foods less 
predictable in freshwater wetlands and Corn 
fields (Schummer et al. 2010). Food and 
energy density are typically less in coastal 
wetlands than freshwater wetlands and Corn 
fields, but coastal wetlands food resources 
are also more consistently available because 
daily tides can refresh animal foods 
(Albright et al. 1983; Jorde 1986; Lewis et al. 
2019). When food is predictable, but at 
relatively low density (e.g. at coastal 
wetlands), storing lipid reserves early in the 
non-breeding period and then mobilising 
those reserves throughout winter is 
considered adaptive (Baldassarre & Bolen 
2006). However, when food resources are 
unpredictable, but abundant (i.e. at 
freshwater wetlands and Corn fields), the 
strategy may change towards storing lipid 
reserves throughout winter when possible 
(Lima 1986). Body mass of  Black Duck 
declined at Corn sites even though isotopic 
analysis suggested they increased Corn 
consumption throughout winter, and animal 
matter intake by Black Duck (as indexed by 
δ15N) was also less at Corn than at coastal 
sites. This pattern further suggests an 
underlying endogenous mechanism of  lipid 
mobilisation in Black Duck, even when 
energy-dense, Corn food resources were 
available and used. However, this pattern 
was not evident in Mallard, which 
maintained or increased body mass during 
winter. Overall, subtle differences in habitat 
use and forage strategies between Black 
Duck and Mallard during winter may explain 
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the differences detected in their body mass 
dynamics.  

Black Duck have a strategy of  strong 
winter philopatry, whereby they do not leave 
wintering areas during severe cold and ice 
events and are subject to starvation 
(Albright et al. 1983; Morton et al. 1989; 
Ringelman et al. 2015). This behaviour may 
have evolved because Black Duck use 
coastal wetlands that rarely freeze for 
extended periods and food resources were 
historically abundant and predictable 
(Stephens et al. 2007; Plattner et al. 2010). In 
contrast, Mallard tend to move south when 
cold temperatures persist (Schummer et al. 

2010) and may use a risk-aversion strategy of  
storing lipids as fuel for migration, in case of  
unpredictable weather (but see Masto et al. 

2022). Mallard tend to be flexible in 
resource use during winter, migrating 
farther south during wetter and colder 
winters (Nichols et al. 1983) and individual 
Mallard that survive winter at one location 
may not return the following year (Krementz  
et al. 2012). It also should be noted that 
Mallard along the north Atlantic coast have 
substantial introgression of  game-farm 
genes (i.e. ≥ 10%), which may influence how 
they store lipids for winter survival and 
migration compared to wild North America 
Mallard and Black Duck (Lavretsky & 
Sedinger 2023; Schummer et al. 2023; 
Lavretsky et al. 2023). Declines in the 
quantity and quality of  coastal wetlands and 
differences in body mass between Black 
Duck and Mallard using Corn sites could 
provide a survival advantage to Mallard over 
Black Duck wintering at Long Island 
because of  the differences in feeding and 
body mass strategies which we observed, 

but further study that tracks individual 
movements of  these ducks and nesting 
success are needed to confirm the situation.  

In our study, PCV was similar for the 
Black Duck and Mallard using Corn sites, 
but substantially less for Black Duck using 
coastal sites, indicating that the Black Duck 
at coastal sites may experience relatively 
higher stress than those at Corn sites  
(Vleck et al. 2000). For Black Duck, we  
also detected that H/L ratios increased 
throughout winter, but with greater increases  
at Corn than at coastal sites. Corn sites 
provide a greater density of  energy-rich 
food than coastal wetlands, which may result 
in less stress for ducks eating Corn. 
Although body mass declined at Corn sites 
in Black Duck, the relative predictability and 
abundance of  Corn was likely greater than 
food sources in coastal wetlands. Consistent 
access to food resources at Corn sites may 
have decreased winter stress in Black Duck, 
despite the recorded declines in body mass. 
Alternatively, lower lymphocytes (white-
blood cells) at Corn sites may make ducks 
more susceptible to disease because their 
immune system is less prepared, or it may 
indicate they are not actively fighting 
infection or disease (Minias 2019).  

Results do not suggest that supplemental 
Corn provided throughout winter at our 
study site was beneficial to Black Duck, 
especially when compared to Mallard at the 
same locale. However, during prolonged 
freeze events when coastal food resources 
are functionally unavailable for extended 
periods (e.g. > 7 days) supplemental Corn to 
the landscape may reduce risk of  starvation. 
For Black Duck, that may have stronger 
winter philopatry compared to Mallard, 
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supplemental foods may be even more 
important. Black Duck using Corn sites had 
greater PCV and H/L ratios than Black 
Duck using coastal wetlands. However, 
Black Duck sampled at Corn sites appeared 
to benefit less from this supplemental food 
than Mallard at the same sites. When 
possible, the focus should be on continued 
protection and restoration of  coastal wetlands  
with the aim of  increasing winter carrying 
capacity of  Black Duck. However, continued  
threats to coastal wetlands from 
urbanisation, sea level rise, and habitat 
fragmentation and degradation may 
necessitate that Corn supply a greater 
portion of  the daily energy requirements of  
Black Duck in the future. Understanding 
daily movements of  individual Black Duck 
and Mallard to determine relative levels of  
niche overlap (i.e. habitat use and selection) 
and resulting survival and reproductive 
effort is needed to better inform 
management of  Corn fields for these ducks 
wintering in a relatively suburban/urban 
environment (Flores 2020; Flores & 
Schummer 2023).  
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