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Abstract

Cross-seasonal effects (CSEs) on waterfowl populations link together events and
habitats that individuals experience as carry-over effects (COEs) throughout the
annual cycle. The importance of  CSEs has been recognised since at least the 1950s.
Studies of  nutrient dynamics beginning in the 1970s, followed by regression analyses
that linked production of  young to winter habitat conditions, confirmed the
importance of  CSEs. CSEs have been most apparent in large-bodied waterfowl, but
evidence for CSEs in much smaller passerines suggests the potential for CSEs in all
waterfowl. Numerous studies have established effects of  winter weather on body
condition and reproduction in both ducks and geese. Additionally, the ubiquitous use
(during laying and incubation) of  nutrients stored previously during spring migration
suggests that such nutrients commonly influence reproductive success in waterfowl.
Carry-over effects from the breeding season to autumn and winter are less well
understood, although nutrition during the growth period in geese has been widely
demonstrated to influence subsequent survival and reproduction. Only a few studies
have examined effects of  breeding on reproduction in later years. Because pathogens
and parasites can be carried between seasonal habitats, disease represents an
important potential mechanism underlying CSEs; so far, however, this role for
diseases and parasitism remains poorly understood. CSEs were originally of  interest
because of  their implications for management of  seasonal habitats and CSEs
represent a fundamental rationale for the habitat joint ventures in North America.
Substantial research examining the role of  COEs in individual fitness and of  CSEs
on population dynamics has now been conducted. New techniques (e.g. stable
isotopes, geolocators) developed over the last decade, combined with more
traditional marking programmes have created opportunities to understand CSEs
more fully and to inform the management of  seasonal habitats for waterfowl. 

Key words: carry-over effect, climate, cross-seasonal effect, fitness, population,
reproduction, survival.
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The concept that variation in habitat quality
can influence population dynamics of
waterfowl has been established for some
time (Lynch 1952). For example, reduced
snow accumulation and spring rains in mid-
continent prairie-parkland ecosystems result
in fewer ponds, which reduces annual
production of  young ducks (Pospahala 
et al. 1974). Kaminski & Gluesing (1987)
extended this notion to include cross-
seasonal effects (CSEs) when they showed
that the influence of  breeding habitat
availability on autumn age-ratios (an index of
the breeding success of  the population) was
modified by population density in Mallard
Anas platyrhynchos. Such density-dependence
in the reproductive process is incorporated
into models of  population dynamics used to
manage harvest rates (Johnson et al. 1997).
For ducks, the number of  breeding
individuals in the population is influenced by
the production of  young from the previous
breeding season and the number of
individuals surviving through winter, so that
density-dependent effects on reproduction
represent a CSE. Newton (2006) showed
how density-dependent mortality operating
at different segments of  the annual 
cycle interacted with density-dependent
reproduction to regulate population size. 

Before the 1970s, attempts to understand
waterfowl population dynamics in North
America focused largely on habitat
conditions in the mid-continent prairie-
parkland breeding areas and on the role of
harvest as the major drivers of  population
trends (Johnson et al. 1992). The interests of
a number of  prominent waterfowl scientists
in the late 1970s to early 1980s coincided,
stimulating discussion and thought on the

role of  habitats used by waterfowl outside
the breeding season in governing their
subsequent breeding activity and thus their
population dynamics. Ankney & MacInnes
(1978) and Raveling (1979) demonstrated
that female geese stored nutrients acquired
before nesting and used these nutrient
reserves during egg laying and incubation.
Ankney & MacInnes (1978) further showed
that clutch size of  Lesser Snow Geese Chen

caerulescens caerulescens was directly related to
their levels of  endogenous nutrients. Shortly
thereafter, Heitmeyer & Fredrickson (1981)
used regression approaches to illustrate that
winter wetland indices and winter
precipitation predicted age-ratios in Mallard
harvested the next autumn in the Mississippi
Flyway, suggesting that winter conditions
influenced production of  young at the
population level. Raveling & Heitmeyer
(1989) used similar approaches to show that
winter habitat conditions in California were
important predictors of  productivity in
Northern Pintail Anas acuta, but that
importance of  winter habitat also depended
on population size and breeding habitat
conditions. In 1982, 40 waterfowl scientists
met in Puxico, Missouri (Anderson & Batt
1983) to identify key aspects of  the winter
ecology of  waterfowl that were still largely
unstudied and not well understood.
Specifically, this group focused on the
potential role of  CSEs in governing
dynamics of  waterfowl populations and
proposed fundamental questions and
approaches toward an improved
understanding of  CSEs. There was strong
support for hypothesis testing, as well as
comparative and experimental approaches
to research combined with long-term
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studies. Participants identified the need to
understand a number of  basic aspects of
waterfowl biology including the extent and
basis for philopatry, potential of  winter
habitats to limit waterfowl populations, the
ecology of  winter habitats, the bioenergetics
of  winter moult, the role of  flocking
behaviour in winter ecology and other
biological processes. A number of  these
questions have been addressed successfully,
but more importantly, the questions
themselves have evolved as our
understanding of  CSEs has increased.

Our goals in this paper are to: 1) provide
a functional definition of  CSEs; 2) discuss
how body size and life-histories affect the
potential for CSEs; 3) describe mechanisms
underlying CSEs; 4) discuss the role of
CSEs in management of  waterfowl; and 
5) propose approaches for detecting,
understanding and measuring the magnitude
of  CSEs.

Cross-seasonal effects

We largely subscribe to the definitions of
CSEs developed by Norris (2005) and
Harrison et al. (2011). These definitions
attribute lagged population processes in one
season to conditions during a previous
season. For example, breeding propensity by
Mallard in prairie-parkland ecosystems
might depend on habitat conditions, feeding
opportunities and climate experienced by
individuals during the previous winter in the
Mississippi Alluvial Valley. We distinguish
between CSEs at the population level and
carry-over effects (COEs) that operate at
the individual level, but the two are linked as
population CSEs can result from COEs
experienced by individuals. The influence of

COEs and CSEs may be modified further by
population size and density-dependence
(Harrison et al. 2011). We exclude from
CSEs those environmental or maternal
effects experienced early in life on traits
such as body size, even though they 
may influence subsequent survival and
reproduction by individuals (e.g. Sedinger et
al. 1995; Cooch 2002), because such effects
are relatively permanent and not necessarily
subject to modification of  individual fitness
by events occurring later in life. We allow for
COEs on both survival and reproduction
with potential lagged effects over multiple
seasons, although we exclude direct effects
of  behaviour or habitat on fitness during the
same season. For example, we do not view
reduced survival of  female ducks associated
with nesting (Arnold et al. 2010) as a COE
but we do consider reduced survival of
breeding individuals over the next winter
(e.g. Daan et al. 1996). Similarly, we do not
consider reduced within-winter survival
associated with occupancy of  a particular
habitat (Fleskes et al. 2007) as a COE, but do
include the potential lagged effect of  lower
survival during spring migration associated
with use of  a particular winter habitat as a
COE. 

Generally, we are interested in COEs that
influence breeding success as a result of
previous events during the same annual
cycle (e.g. Alisauskas 2002; Bêty et al. 2003).
Presumably, a COE may extend from one
breeding season to the next, although effects
extending over a full annual cycle may be
mediated by events during intervening
seasons (Fig. 1). We are also concerned with
factors that affect survival in seasons
subsequent to use of  particular habitats or
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investments in reproduction. In this paper,
we consider COEs that have the potential to
influence both reproduction and survival.
We also explore how COEs that operate at
the individual level as precursors may scale
up to CSEs at the population level. Such
scaling up brings population level processes
such as density-dependence into play.

Body size, life-histories and the
potential for cross-seasonal
effects

Body size is clearly related to the ability to
store nutrients in one season for use in

another (Alisauskas & Ankney 1992), 
which results in part from lower mass-
specific metabolic rate in larger species
(Kleiber 1975). Use of  previously stored
(endogenous) nutrients for egg formation
and incubation generally increases with
body size (Alisauskas & Ankney 1992;
Meijer & Drent 1999; Alisauskas & DeVink
2015), although details about use of
endogenous nutrients for breeding may vary
as a function of  the ecology or life-histories
of  individual species (e.g. Alisauskas &
Ankney 1992; Alisauskas & DeVink 2015).
Because greater reliance on endogenous
nutrients should increase the potential for

Figure 1. Hypothetical links between habitat availability, nutritional status (measured as body mass) and
the probability of  breeding. We show increases in mean mass in response to increases in wintering
habitat but two different responses to increased mass. In scenario (b), threshold mass required for
breeding does not change in response to increased mass, while in scenario (c) threshold mass increases
in response to habitat availability, resulting in a similar proportion of  individuals breeding before and
after habitat enhancement. Under scenario (c), individuals benefit nutritionally from increased food
availability but other attributes (potentially latent) prevent many individuals from translating improved
nutritional status into increased reproductive success. We do not advocate scenario (c) as the expected
response to improved habitat conditions. In fact, numerous examples suggest that individuals respond
positively to increased food availability. The intention, here, is to indicate that complexities, including
latent attributes of  individuals, may influence population level responses to habitat management.
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COEs, one might expect that COEs are
more common in larger-bodied waterfowl
species (but see below). In fact, the largest
numbers of  examples of  CSEs exist for
larger bodied waterfowl, especially geese
(Table 1), although this may reflect to some
extent the greater ease with which
individuals of  larger-bodied species can be
monitored (e.g. Ebbinge & Spaans 1995).

Other aspects of  life-histories covary
with body size and also might be predicted
to influence the potential for COEs. For
example, duration of  maintenance of  social
bonds within families increases with body
size; most geese and swans normally show
lifelong monogamy and their young remain
in family units through the first winter (with
their parents) and sometimes through a
second winter (either with parents or solely
in sibling groups, e.g. Prevett & MacInnes
1980; Scott 1980). Because size of  family
groups influences social status (Boyd 1953;
Raveling 1970; Poisbleau et al. 2006),
breeding success in one year affects social
status in the following winter. Social status
related to family size affects dominance and
aggressive defence of  food resources.
Presumably, enhanced access to food
improves daily efficiency of  nutrient storage
during spring hyperphagia as geese travel
north to breeding areas. Thus, a series of
sequential COEs from the arctic summer,
through the following winter and spring
migration may influence reproductive
investment by individual females in a
subsequent breeding season. 

Timing of  pair formation in ducks is a
function of  body size. For example, larger
bodied Mallard form pair bonds in early
autumn, while small-bodied Blue-winged

Teal Anas discors and Green-winged Teal 
A. crecca may not be paired until later in 
the year (MacKinney 1986). Additional
energy demands of  males from larger
species associated with maintenance of  
pair bonds throughout autumn and winter
might increase the potential that males 
of  larger species are more influenced by
habitat quality in winter than is the case for
smaller bodied species. Alternatively, costs
of  delayed pairing by females of  larger
bodied species, and associated reduced
access to food resources from intra- and
interspecific competition, might interact
disadvantageously with habitat quality to
create greater potential for COEs in females
of  larger-bodied species.

Despite the clear logic underlying the
linkage between body size and potential for
COEs, there may be species-specific
deviations from this general pattern in
waterfowl. Examples from non-waterfowl
species indicate that some caution is
warranted when considering such
relationships. Variation in quality of
wintering habitat, and its influences on
reproductive performance by American
Redstarts Setophaga ruticilla is a very clear
illustration of  COEs (Marra et al. 1998), and
there exist numerous other examples from
small passerines and shorebirds (Norris &
Marra 2007). Body size is probably too small
in these passerine and shorebird examples
for substantial mass to be carried between
sequentially used seasonal habitats. So, the
existence of  COEs in such small birds
suggests that mechanisms underlying COEs
may involve complexities beyond nutritional
dynamics. We address some of  these
potential mechanisms below. 
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Cross-seasonal effects in
waterfowl

Evidence of  CSEs transmitted from
wintering areas to breeding is extensive
(Table 1). Studies based on regression of
population age ratios in post-breeding
censuses against precipitation in the previous
winter, demonstrate ecological links between
landscapes separated sometimes by lengthy
time lags of  several months or great
distances of  thousands of  kilometres. For
example, winter precipitation can influence
habitat, and thus feeding conditions for
wintering waterfowl that in turn affect the
production of  young at the population level
as indexed by age ratios during the following
hunting season (Heitmeyer & Fredrickson
1981; Raveling & Heitmeyer 1989). Boyd et
al. (1982) found that winter precipitation in
the U.S. along the Gulf  of  Mexico affected
the number of  adult Lesser Snow Geese and
their breeding success to a greater extent
than spring temperatures and precipitation in
the Dakotas and southern Manitoba, which
are used during spring migration. More
recently, winter climate has been related to
age-ratios in Barnacle Geese Branta leucopsis

(Trinder et al. 2009), pre-breeding body mass
of  Common Eiders Somateria mollissima

(Descamps et al. 2010), as well as their
breeding propensity (Jónsson et al. 2009) and
breeding success (Lehikoinen et al. 2006).
Correlations between expansion of  cereals
and other agricultural crops in both North
America and Europe, and the growth of
goose populations on both continents,
support inferences from earlier regression-
based studies about the importance of  food
supply to population growth. Finally,

capture-mark-recapture (CMR) studies
which demonstrate that quality of  wintering
locations influences breeding probability (e.g.
Sedinger et al. 2011) provide additional
evidence for the impact of  winter habitats on
production of  offspring. Evidence for CSEs
currently appears stronger for geese than for
ducks (Table 1), but we suspect that this in
part represents the greater ability to monitor
individual geese throughout the annual cycle
than is the case for ducks. 

Evidence for CSEs linking spring
migration and breeding are especially strong
(Table 1). Studies using stable isotopes
demonstrate that nutrients acquired away
from breeding areas contribute to egg
production in numerous species of  ducks
and geese (Table 1). In some cases
contributions of  endogenous nutrients to
eggs were relatively modest (< 30% of  the
total). Such modest contributions to egg
formation may, however, provide essential
supplements to dietary nutrients if  the latter
are insufficient to meet the daily needs of
females for egg production. Such needs can
be substantial during early clutch formation,
when yolk and albumin formation overlap
(Alisauskas & Ankney 1992). Drent & Daan
(1980) considered variation in reliance on
nutrient reserves for egg formation along a
capital-income continuum. Some studies
have characterised egg formation as
income-based if  more than half  of  egg
nutrients supplied were exogenous.
However, the pervasiveness of  nutrient
reserve use (particularly of  fat) in waterfowl
(Ankney & Alisauskas 1991; Alisauskas &
Ankney 1992) suggests to us that usage of
nutrient reserves might be largely obligatory,
or at least highly adaptive, and so any usage
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might be properly considered as a capital
breeding strategy.

Numerous studies have shown that
nutritional state in spring affects success in
producing offspring (Table 1). Similarly,
earlier migrants typically are more likely to
produce offspring (e.g. Prop et al. 2003).
Because these studies were without
experimental manipulation and so primarily
observational, we cannot rule out the
potential for spurious correlation between
condition, or timing of  migration, and
reproductive success; that is, other
unmeasured variables may have been
associated with both nutritional status and
production of  offspring, but without the
former variate directly influencing the latter.
Two kinds of  experiments, however, suggest
that nutritional status can have an important
influence on reproductive success in
waterfowl. First, implementation of  a spring
hunt on a major spring staging area for
Greater Snow Geese C. caerulescens atlanticus,
reduced nutritional status of  staging geese,
associated with increased disturbance (Féret
et al. 2003), and reduced the proportion of
females that attempted to nest and
reproductive investment by those females
that did nest (Mainguy et al. 2002; Bêty et al.
2003). Second, reduced availability of
agricultural habitats for Pink-footed Geese
Anser brachyrhynchus during spring migration
in Norway reduced both nutritional status of
migrating geese and their subsequent
reproductive success (Drent et al. 2003).

CSEs on adults from breeding to autumn
or winter are generally less well understood
than those linking other seasons.
Limitations in our understanding reflect the
difficulty of  monitoring highly mobile

individuals outside the breeding season and
the difficulty of  monitoring non-breeding
individuals that typically migrate away from
breeding areas to moult. Nevertheless, there
are a priori reasons to expect that such CSEs
exist and empirical evidence exists for such
CSEs. 

Female waterfowl invest substantial
nutrients into both egg formation and
incubation (Alisauskas & Ankney 1992;
Afton & Paulus 1992; Alisauskas & DeVink
2015) and these nutrients must be
replenished before autumn migration
(Sedinger & Bollinger 1987). Post-breeding
storage of  nutrients occurs simultaneously
with brood rearing and moult. Increased
vigilance and attentiveness of  adults toward
their offspring may be at the expense of
reduced foraging effort (Schindler &
Lamprecht 1987; Sedinger & Raveling 1990;
Sedinger et al. 1995), potentially reducing
nutrient intake. The simultaneous need to
grow feathers and restore nutrient reserves
has the potential to reduce feather quality,
rate of  restoration of  nutrient reserves or
both. Schmutz & Ely (1999) and Eichholz
(2001) each found that autumn survival was
related to nutritional status, so the ability of
adults to restore nutrients after hatch has
implications for fitness later in the year.

Breeding success in geese can also
influence events during the non-breeding
season because family cohesion persists for
a full year after hatch and family groups are
dominant to pairs without young or singles
(Raveling 1970; Prevett & MacInnes 1980;
Lamprecht 1986; Poisbleau et al. 2006).
Social status is related to position in foraging
flocks and food intake (Boyd 1953; Gregoire
& Ankney 1990; Black et al. 1992); thus,
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successful reproduction has the potential to
influence nutrient dynamics the following
winter through its effect on social status.
Consistent with this hypothesis, Sedinger et
al. (2011) showed that Black Brant B. bernicla

nigricans that bred tended to shift to higher
quality wintering areas the following winter.
Similar mechanisms could occur in ducks if
more “attractive” individuals pair earlier in
autumn and experience enhanced social
status as a result. Gregoire & Ankney (1990)
also noted that family structure varied by
winter habitat, so that any COEs of
nutrition related to previous breeding
success and resulting family size during
winter on subsequent breeding may interact
with the types of  winter habitats occupied. 

Finally, numerous studies have
demonstrated COEs based on experience
during their first summer for young
waterfowl, especially geese. Growth
conditions during the first summer
influence survival during the next autumn
(Owen & Black 1989; Hill et al. 2003;
Sedinger & Chelgren 2007; Aubry et al.
2013) and ultimately, recruitment into the
breeding population (Cooke et al. 1984;
Sedinger et al. 2004). An important
determinant of  survival probability for
goslings over the year after they fledge is
phenology of  hatch, both within years and
between years (Cooch 2002; Slattery &
Alisauskas 2002; Aubry et al. 2013). Slattery
& Alisauskas (2002) found that dispersal
distance by goslings after hatching
influenced their subsequent survival
probability over the next year. Dzus & Clark
(1998) showed that hatch date influenced
recruitment in Mallard, and Alisauskas &
Kellett (2014) found a negative effect of

relative initiation date of  nests that produced
King Eider S. spectabilis ducklings, with
equivocal support for an additive negative
influence of  spring thaw date on the age that
ducklings were recruited as breeders. Both
studies support the notion that events early
in life can influence recruitment and life-
time reproductive success.

Investments in breeding by female
waterfowl may result in lagged trade-offs
with subsequent breeding or with other 
life-history traits. Viallefont et al. (1995)
demonstrated that Lesser Snow Geese
breeding for the first time were less likely to
breed the following year, suggesting the
existence of  costs associated with these first
breeding attempts. Specific brood-rearing
areas used by female Black Brant influenced
their likelihood of  breeding the next year
(Nicolai & Sedinger 2012). Assessment 
of  breeding costs is complicated by
heterogeneity in individual quality (van
Noordwijk & de Jong 1986) and variation in
the probability of  breeding among
individuals (Sedinger et al. 2008; Hoye et al.
2012). Additionally, as noted above,
successful breeding by geese enhances their
social status (Poisbleau et al. 2006), which
may compensate for some of  the costs of
breeding (e.g. Sedinger et al. 2011). Leach &
Sedinger (unpubl. data) manipulated brood
size and found that removing broods can
negatively affect probability of  breeding the
following year, but increasing brood size can
also reduce breeding the following year for
larger initial brood sizes. These results are
generally consistent both with the social
advantages of  breeding in geese, and the
idea that successful breeding can induce
costs for future breeding.
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Drake (2006) experimentally manipulated
nest success of  Ross’s Geese C. rossii and
found that survival of  successful nesters was
consistently lower than those with destroyed
nests, and that the strength of  this effect
varied among years, consistent with COEs
of  successful breeding on subsequent
survival. However, we note that there is a
general paucity of  studies of  CSEs on the
survival of  breeding adults, and suggest that
the lack of  such results reflects logistical or
technical difficulties in assessing the survival
of  adults in breeding versus non-breeding
states. Because non-breeding waterfowl
typically undergo moult migrations to areas
remote from breeding habitats (Hohman et
al. 1992), it is uncommon that samples of
both breeders and non-breeders are
monitored simultaneously. As illustrated by
Drake (2006), this can be remedied to a
certain extent by experimentation. The
limited evidence for absence of  evidence for
CSEs on survival should, thus, be viewed as
an absence of  appropriate data, rather than
an absence of  such CSEs.

Mechanisms for cross-seasonal
effects 

The most direct mechanism underlying
CSEs in waterfowl, especially those linking
winter and spring migration areas to
breeding, relates directly to nutritional state,
and is, therefore, related to individual
abilities to store more nutrients earlier than
others (Prop et al. 2003; Drent et al. 2003).
Individual variation in schedules of  nutrient
storage induces and governs variation in
departure phenology. For example,
Alisauskas (1988) found that Lesser Snow

Geese constituting the northernmost
vanguard of  the mid-continent Lesser Snow
Goose population during spring migration
were fatter than conspecifics farther south
at the same calendar date. Earlier arrival
during migration increases the potential for
protracted residency at each staging area,
which may permit greater nutrient
acquisition (Drent et al. 2003). The result is
that individuals that store high levels of
nutrients early at any staging area tend to
maintain this advantage throughout spring
migration, resulting in higher probability of
early arrival onto nesting areas, earlier
breeding and larger clutches (Prop et al.
2003; Drent et al. 2003; Bêty et al. 2003). 

It is unlikely that the same nutrients stored
in winter or early in migration actually
contribute directly to reproduction because
the substantial energy costs of  long-distance
migratory flight result in a major turnover 
of  nutrients throughout spring migration.
Although most assessments of  the
contribution of  endogenous nutrients to egg
production distinguish between body reserves
acquired by the female before arrival on the
breeding grounds (i.e. “capital” breeders) and
food acquired locally on or near the breeding
territories (for “income” breeders: Drent &
Daan 1980; Gauthier et al. 2003; Hobson et al.
2004; Cutting et al. 2011), they do not assign a
geographic origin to endogenous nutrients. As
suggested by Klaassen et al. (2006), it is
important to distinguish between distant versus

local capital breeding (i.e. whether intensive
feeding in preparation for breeding is a few
kilometres from the breeding areas or at more
distant sites), in addition to determining
whether the birds use capital or income
breeding strategies.
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The substantial investments required for
egg-laying by waterfowl create the potential
for COEs, yet few examples of  such COEs
exist. We exclude costs of  breeding, such as
reduced survival, that occur during the
breeding season (Madsen et al. 2002; Arnold
et al. 2010) because such trade-offs, while
real, do not represent COEs. Clearly, the
ability of  breeding adults to restore
nutrients depleted during breeding may
influence fitness during seasons following
breeding. Several studies document a
relatively slow replenishment of  nutrients
before the post-breeding moult (e.g. Ankney
& MacInnes 1978; Ankney 1984; Fox et al.
2013). Non- and failed-breeding Black Brant
gained more mass before moult than did
adults with broods (Fondell et al. 2013),
suggesting the possibility that mass gain
following nesting might be constrained by
competing demands of  tending broods.
Virtually all species lose mass during moult
(Hohman et al. 1992), and while there is
debate about whether such mass loss is
adaptive (e.g. Fox & Kahlert 2005), adult
waterfowl do not restore nutrient reserves at
this time of  year. Thus, investments in
reproduction, combined with constraints on
the ability to replenish these nutrients
following breeding, have the potential to
influence fitness in seasons following
breeding. 

Waterfowl undergo complete remigial
moult and become flightless at the same
time that they are restoring nutrients
depleted during breeding, which has the
potential to influence feather quality as well
as somatic nutrient levels. Both moult
location (Norris et al. 2007) and competing
nutritional demands during moult (Norris et

al. 2004) influence feather colour in
passerines. Legagneaux et al. (2012)
demonstrated that the iridescent colouration
in Green-winged Teal was influenced by the
location where individuals moulted,
consistent with the hypothesis that nutrient
availability influenced feather quality and
perhaps attractiveness to mates. Feathers of
yearling Black Brant during their second
summer are highly degraded relative to
those of  adults (J. Sedinger pers. obs.).
Because development of  these feathers
occurred during the growth period, when
nutrient availability is typically limiting tissue
production (e.g. Sedinger 1984; Sedinger et

al. 2001), the poor quality of  feathers on
yearling geese is consistent with the notion
that nutrient availability could influence
feather quality, as is the case in other birds
(Butler et al. 2008). Absence of  data on
feather quality and the relationship between
feather quality and fitness in waterfowl have
hindered assessment of  linkages between
feather quality and fitness (COE) or
population dynamics (CSE) of  waterfowl.
We suggest that such research is warranted. 

Immune function and associated disease
status both provide mechanisms that could
facilitate CSEs. Long-distance migrants
appear to be more exposed, or more
susceptible, to parasitic infection (Figuerola
& Green 2000). Two studies demonstrate
that parasite load during brood-rearing has a
negative influence on the survival of  young
after fledging (Slattery & Alisauskas 2002;
Souchay et al. 2013). Nematode levels were
negatively associated with lipid levels for
Lesser Snow Geese during spring migration
(Shutler et al. 2012). The authors could not
differentiate between the hypotheses that: 



Cross-seasonal effects on waterfowl 291

© Wildfowl & Wetlands Trust Wildfowl (2014) Special Issue 4: 277–304

1) nematode infestation inhibited lipid
deposition; 2) some individuals were
chronically infected, which reduced the size
of  nutrient stores; and 3) individuals that
invested more in lipid storage and less in
immune function were more susceptible 
to nematode infection. The first two
hypotheses would be consistent with COEs
associated with disease. 

Cholera Pasturella multicida has been
known for some time to cause substantial
mortality on both breeding and wintering
areas (Rosen & Bischoff  1949; Wobeser 
et al. 1983). The dynamics of  Cholera
transmission are not well understood but
evidence suggests that individuals serve as
carriers (Samuel et al. 1999, 2004, 2005),
creating the potential that exposure of
individuals in one seasonal habitat can lead
to disease transmission and mortality in
another season, with possible population
level consequences. Sub-lethal roles of
disease beyond immediate mortality effects
are also not well understood. Infection by
low-pathogenic avian influenza has been
associated with less efficient feeding and
delayed migration in Bewick’s Swans Cygnus

columbianus bewickii (van Gils et al. 2007).
Latorre-Margalef  et al. (2009) found that
Mallard infected with avian influenza had
lower body mass during migration, which
could influence timing of  migration and
investment in reproduction. The association
between the timing of  migration and
reproductive success (see above) suggests
that infection could cause lower
productivity. Such sub-lethal effects are
likely to be of  broader importance in
waterfowl, especially when individuals 
are concentrated because wintering or

migration habitat is limited (Galsworthy et

al. 2011; Gaidet et al. 2012).
Investment in reproduction can reduce

immune function in waterfowl (Hanssen et

al. 2003, 2005) and other birds (Deerenberg
et al. 1997; Schmidt-Hempel 2003), with the
potential for lower survival or reduced
reproductive success in the future. Immune
challenges in Mallard (post-fledging)
influences colour preference and response
to novel environments (Butler et al. 2012), as
well as the ability to mount an immune
response as adults (Butler & McGraw 
2012). Although Norris & Evans (2000)
demonstrated that investment in breeding
affected immune function, which in turn
influenced infection rate and reduced
fitness, such studies are rare. The presence
of  complex sequential causative events
relating individual variation in immune
function to variation in fitness could
translate to population level effects if
pervasive. We believe studies that address
such mechanisms underlying CSEs in
waterfowl may be relevant to a full
understanding of  population dynamics.

Implications of  cross-seasonal
effects for management

The potential for CSEs was implicit in the
development of  winter habitat joint
ventures in North America during the
1980s, as suggested by references to specific
links between habitat and waterfowl
population objectives in joint venture
documents (e.g. Central Valley Habitat Joint
Venture 1990). In some cases, specific
mechanisms behind assumed CSEs were not
made explicit until sometime later (Koneff
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2006 unpublished letter to the North
American Waterfowl Management Plan
evaluation team). Establishment of  the 
joint ventures stimulated substantial new
research into dynamics of  food availability
in both wetlands (Naylor 2002; Hagy &
Kaminski 2012a,b; Leach et al. 2012) and
agricultural habitats (Stafford et al. 2010;
Foster et al. 2010), which typically
demonstrated the potential for food to
become limiting by December and January
(Naylor 2002; Foster et al. 2010). These
modern studies built on earlier estimates of
food abundance and carrying capacity of
winter habitats for waterfowl in Europe
(Ebbinge et al. 1975; Owen 1977) and North
America (Givens et al. 1964). Demonstration
of  winter food depletion, combined with
increases in many goose populations
associated with increased availability of
agricultural foods (Abraham et al. 2005; Fox
et al. 2005; Gauthier et al. 2005), indicate that
agroecosystems or direct management of
winter habitats for waterfowl has great
potential to influence dynamics of  their
populations. Refining winter habitat
management will require improved
understanding of  the interplay among
winter food abundance, winter population
density, COEs, availability of  breeding
habitat and breeding population density (e.g.
Runge & Marra 2005; Norris & Marra
2007). We contend that methods now exist
to improve our understanding of  all of
these questions (see below).

Disease transmission increases at higher
densities (Rosen & Bischoff  1949; Gaidet et
al. 2012), so the availability of  winter habitat
can potentially influence rates of  infection
at the population level. Infection may

influence survival rates (e.g. Slattery &
Alisauskas 2002) and migration behaviour
(van Gils et al. 2007; Latorre-Margalef  et al.
2009). Thus, availability of  winter habitat
not only has the potential to influence CSEs,
but habitat management on the wintering
grounds could influence disease processes
and so affect the dynamics of  waterfowl
populations.

Harvest pressure influences behaviour
(Fox & Madsen 1997; Webb et al. 2011) and
habitat use (Béchet et al. 2003; Moore &
Black 2006), which in turn can affect
nutritional status and investment in
breeding, at least in geese (Mainguy et al.
2002). Direct effects of  harvest on mortality
rates and population dynamics vary as a
function of  body size (Rexstad 1992;
Sedinger et al. 2007; Sedinger & Herzog
2012; Péron et al. 2012). Indirect effects of
harvest acting through nutrient dynamics
are poorly understood for ducks and most
populations of  geese (but see Pearse et al.
2012). Nevertheless, examples cited here
indicate that the effects of  harvest are likely
to be more complex in all waterfowl than are
currently assumed. 

Density-dependent effects on
recruitment are well established in both
ducks (Kaminski & Gleussing 1987) and
geese (Loonen et al. 1997; Lake et al. 2008)
although mechanisms are less well
understood for ducks. In geese, a substantial
proportion of  density-dependence occurs
through food limitation during growth
(Cooch et al. 1991b; Sedinger et al. 1998) and
reduced survival during the first year
associated with small body size (Sedinger 
& Chelgren 2007; Sedinger & Nicolai 
2011). Thus, density-dependent effects on
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recruitment in geese reflect a CSE/COE
effect on each year’s cohort of  young. A
number of  years of  predator removal in the
North American prairies has resulted in
substantially increased nest success (Pieron
& Rohwer 2010). Increased production of
ducklings, however, has not produced any
increase in local densities (Amundson et al.
2013). A reasonable hypothesis for the lack
of  a population response to increased
duckling production is that increased brood
densities, resulting from higher nest success,
increased competition for food, and slower
growth and lower post-fledging survival of
ducklings, similar to mechanisms reported
for geese.

Remaining issues and
approaches to estimating 
cross-seasonal effects

Much of  our understanding of  CSEs is
based on individual responses to an
interplay between physiological states and
environmental conditions (Table 1). An
understanding of  how individual effects
translate into population level responses will
require an appreciation of  how population
density feeds back on individual responses
(Runge & Marra 2005; Norris & Marra
2007). Higher density could, for instance,
induce shifts in the mean and variance of
individual states (Fig. 1). An important
determinant of  whether individual response
has relevance to population level effects is
the degree to which heterogeneity exists in
response to population density. For
example, Lindberg et al. (2013) did not
detect a relationship between the proportion
of  “low quality” individuals in Black Brant

cohorts and per capita food abundance. Thus,
it seems that populations may include a
relatively fixed proportion of  “low quality”
individuals, incapable of  response to
density-dependent habitat conditions. 

Assessment of  most habitat joint
ventures has been based on waterfowl
response in the season for which a specific
habitat is managed. For winter habitat joint
ventures, effectiveness is often measured in
predicted “use-days”, based on measures of
food abundance and models of  nutritional
requirements (e.g. Stafford et al. 2006).
Alternatively, nest success is used to assess
habitat programmes on breeding areas (e.g.
Stephens et al. 2005). These approaches
cannot assess the true value of  habitat in the
context of  the complete annual cycle of
waterfowl, however, because they do not
account for CSEs, which may modulate 
the response of  individual birds to
concurrent habitat conditions. Moreover, an
understanding of  the role that CSEs play in
the dynamics of  waterfowl populations
requires knowledge about proportional
habitat use by specific populations at any
point in the year, and how this varies over
the annual cycle. Although challenging, such
information would permit an assessment 
of  the reproductive success of  individuals 
in relation to management actions on
previously used wintering areas. The
situation may be reinforced by individuals
that fledged in a particular breeding habitat
migrating to, and also wintering in, the same
habitats that had a role in their production.
It is unclear how such COEs may have
influenced the evolution of  both breeding
and winter philopatry, but the adaptiveness
of  occupying high quality habitats which
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enables pre-breeding ducks to improve their
condition probably also has relevance for
the survival of  the new recruits to the
population and the likelihood of  them
joining the breeding cohort in due course.
Such a scenario may have played a role in the
evolution of  persistent family bonds in
geese. 

As mentioned above, spring phenology
of  arctic snow melt governs the timing of
nesting, hatch and gosling growth for all
arctic-nesting geese and also for many of
the sea duck species. High plasticity in
growth rates is an apparent adaptation to
high variability in nutritional supply to
goslings both within and among years,
permitting nutritional flexibility in years of
nutritional stress, although at the cost of
reduced survival and adult body size when
nutrients are limited during the growth
period. Such intraspecific variation in body
size and morphology influences not only
subsequent survival, but can influence
habitats and broad-scale landscapes
occupied during the following winter.
Alisauskas (1998) found that Lesser Snow
Geese in their traditionally used coastal
marsh habitats during winter were larger
than conspecifics from inland agricultural
landscapes associated with rice agriculture,
both of  which, were larger than Lesser
Snow Geese wintering farther north near
the Missouri River Valley of  Iowa and
Nebraska. Alisauskas (1998) suggested that
perhaps large scale expansion of  winter
range associated with the correlation
between body size and bill morphology may
have been coupled with density-dependent
morphological change on breeding areas.
Thus winter range dynamics appear to result

from an interplay of  winter food
distribution and density-dependent effects
expressed on the lifelong morphology of
geese from events experienced as growing
goslings in the arctic. 

Studies of  geese have been especially
successful in identifying cross-seasonal and
cross-ecosystem linkages because of  the
relative ease of  marking and observing them
at multiple sites throughout the year. Ross’s
Geese and Snow Geese are highly
gregarious, very abundant and occur at very
high densities throughout the year, which
poses great challenges in marking sufficient
numbers so that individuals can be detected
and studied. Ring recoveries provide a
mechanism for linking together breeding,
migration and wintering habitats (e.g.

Alisauskas et al. 2011). We believe that many
waterfowl scientists assume similar
approaches are not possible for diving or
dabbling ducks (genera Aythya and Anas) for
a number of  reasons, including insufficient
site fidelity and the difficulty of  using
markers that can be detected at a distance. In
our view, this is too pessimistic. Several
studies of  marked ducks on breeding areas
demonstrated excellent success at re-
encountering breeding females marked in
earlier years (Sowls 1955; Arnold & Clark
1996; Anderson et al. 2001; Blums et al.
2002), indicating substantial fidelity to
relatively small, well-defined breeding areas.
We acknowledge it may be difficult or
impossible to encounter individuals from
these kinds of  studies on migration or at
wintering sites, as has been undertaken for
geese. The emergence of  new technologies
should, however, improve the ability to
identify links between breeding, staging and
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wintering areas. Stable isotopes in tissues
grown during known time periods provide
one mechanism for assigning individuals to
habitats remote from the breeding range
(Hobson et al. 2004; Clark et al. 2006), or
winter areas (Mehl et al. 2005). This
approach can take advantage of  specific
feather tracts moulted outside the breeding
season (Smith & Sheeley 1993; Combs &
Fredrickson 1996) or toe nails which are
grown continuously (Clark et al. 2006).
Geolocators, which record the timing of
sunrise and sunset, to allow reconstruction
of  latitude and longitude, provide an
alternative approach (e.g. Eichhorn et al.
2006). Both geolocators and stable isotopes
require that individuals be captured but the
studies cited demonstrate that large
numbers of  breeding females can be
captured during nesting. The addition of
either geolocators or stable isotope methods
to traditional marking and recapture on
long-term study sites could enhance
substantially knowledge of  CSEs for species
other than geese.

Our understanding of  the role of  CSEs
in both the dynamics of  populations and
fitness of  individuals has increased
dramatically over the past three decades.
This information and new technologies are
now sufficiently developed to allow more
detailed assessments of  the role of  seasonal
habitats in the dynamics of  specific
populations. We believe it is now possible to
use modern methods in the context of
CSEs to improve and prioritise management
of  seasonal habitats. We also believe it is
now possible to incorporate events and
decisions throughout the complete annual
cycle into our understanding of  life-history

strategies. We are beyond the demonstration
phase; we suggest that it is now time to
move waterfowl biology forward.
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